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Invasive pressure-volume (PV) assessment with a conductance cath-
eter is the gold standard for the real-time evaluation of ventricular car-
diomechanics. The conductance catheter relies on Ohm’s conductance-
to-volume equation, which translates segmental conductance into a
marker of volume. A baseline appraisal of ventricular volume is
mandatory to calibrate the conductance catheter signal.

Validated volume calibration involves thermodilution and hypertonic
saline boluses (2x 10 mL NaCl 5.0%) in the right ventricle (RV) or left
ventricle (LV) to determine the proportionality constant and the so-called

parallel conductance created by the surrounding tissues."? Hypertonic
saline will augment blood conductivity. Actual ventricular volume is
determined by subtracting the parallel conductance fraction from the
total conductance.® The proportionality constant is derived from the
cardiac output that is obtained by thermodilution. This volume calibra-
tion method is invasive, time-consuming, and presents intrinsic mea-
surement errors in the presence of significant tricuspid or mitral
regurgitation.

Echocardiography is readily available in catheterization laboratories
for ventricular volume assessment and could be used for noninvasive
volume calibration.”® The main objective of this pilot study was to
compare the established volume calibration method by hypertonic saline
and thermodilution with noninvasive volume calibration by
two-dimensional transthoracic echocardiography (2D-TTE) and
three-dimensional transesophageal echocardiography (3D-TEE).

We included all consecutive patients in whom a conductance catheter
was introduced during transcatheter valve interventions at the Erasmus
University Medical Center, Rotterdam, The Netherlands, between July
2022 and August 2023. Patients with atrial fibrillation or frequent
ectopic ventricular beats (defined as >7/min) were excluded. All patients
provided written informed consent, and the study was conducted ac-
cording to the Declaration of Helsinki.

A 7F conductance catheter (CD Leycom, Hengelo, The Netherlands)
was inserted through femoral arterial or venous access and positioned in
the LV or RV apex, respectively. A pulmonary artery catheter was
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introduced through right jugular venous access for cardiac output mea-
surement by thermodilution and hypertonic saline administration. In
patients who underwent tricuspid or mitral transcatheter edge-to-edge
repair (t-TEER/m-TEER), RV and LV PV loops were created. In patients
with planned transcatheter aortic valve replacement (TAVR), LV PV
loops were constructed.

In TEER patients, 3D-volume reconstructions were obtained from
TEE-derived 4-chamber views at 60 degrees, with focused recordings of
LV and RV using full volume mode. Sector width and depth were adjusted
to obtain maximum image quality at the highest possible frame rate, and
all studies were electrocardiogram-gated. In TAVR patients, LV apical 2
and 4-chamber long-axis views were recorded by 2D-TTE. Echocardiog-
raphy images were made with the Philips EPIQ ultrasound system (Phi-
lips Healthcare, Andover, Massachusetts). In all patients,
echocardiography recordings and PV reconstructions were obtained both
immediately before and after valve implantation or valve repair. Echo-
cardiographic data and invasive data were acquired within an interval of
minutes, and no medications or intravenous fluids were administered in
between. TTE was performed in the left lateral decubitus position to
allow optimal acquisition of apical images, while TEE and invasive
measurements were performed in supine position.

Dedicated, validated imaging segmentation software (3Mensio
Structural Heart, Pie Medical, Maastricht, The Netherlands) was used for
segmentation of 3D-TEE images into short-axis and long-axis views.
Using a stacked model with 8-mm slices, endocardial borders were semi-
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automatically traced in short-axis views. Long-axis views were used to
verify that ventricular contours were properly traced. Full-cycle imaging
allowed for accurate measurement of end-systolic and end-diastolic
volumes. Four to six consecutive cardiac cycles were used to obtain
full-volume 3D-TEE data. The average of three best-quality consecutive
cardiac cycles was used in 2D-TTE.

Different software (Caas Qardia, Pie Medical, Maastricht, The
Netherlands) was used for segmentation of 2D-TTE images. Endocardial
borders were traced semi-automatically on 2 and 4-chamber images to
create a spherical 3D LV-mesh model with end-systolic and end-diastolic
LV volumes. Agreement between echocardiography-derived and
thermodilution-derived volumes was assessed using Bland-Altman plots
and by calculation of intraclass correlation coefficients (ICC, two-way
mixed, single measure, consistency). Distributions of variables were
tested for normality by using the Kolmogorov-Smirnov test and visual
inspection of histograms. Data analysis was performed using SPSS
version 25.0 (SPSS, Chicago, United States).

In total, 332 patients underwent TAVR, 49 m-TEER, and 18 t-TEER. A
conductance catheter was introduced in 57 TAVR, 28 m-TEER, and 13 t-
TEER patients. Two TAVR patients, 6 m-TEER patients, and 1 t-TEER
patient were excluded due to arrhythmias. Two-dimensional TTE-derived
LV volumes correlated well with volumes obtained by hypertonic saline
and thermodilution (ICC 0.92 [95% CI 0.88-0.95], p < 0.001). Three-
dimensional TEE-derived volumes also showed a good correlation with
volumes obtained by hypertonic saline and thermodilution for LV (ICC
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Figure 1. Bland-Altman plots and scatter plots of ventricular volume determined by echocardiography and invasive measurement. (a) 2D-transthoracic echocardi-
ography apical 4 chamber view; (b) 2D-transthoracic echocardiography apical 2 chamber view; (c) Bland-Altman plot showing the mean difference between 2D-echo-
cardiography-derived and invasively measured ventricular volumes; (d) scatter plot of 2D-echocardiography-derived and invasively measured ventricular volumes. (e)
3D-transesophageal echocardiography left ventricular long axis view; (f) 3D-transesophageal echocardiography left ventricular short axis view; (g) Bland-Altman plot
showing the mean difference between 3D-echocardiography-derived and invasively measured ventricular volumes; (h) scatter plot of 3D-echocardiography-derived
and invasively measured ventricular volumes. (i) 3D-transesophageal echocardiography right ventricular long axis view; (j) 3D-transesophageal echocardiography
right ventricular short axis view; (k) Bland-Altman plot showing the mean difference between 3D-echocardiography-derived and invasively measured ventricular
volumes; (1) scatter plot of 3D-echocardiography-derived and invasively measured ventricular volumes

Abbreviations: 2D-TTE, two-dimensional transthoracic echocardiography; 3D-TEE, three-dimensional transesophageal echocardiography; ICC, intraclass correlation
coefficient; LVEDV, left ventricular end diastolic volume; LVESV, left ventricular end systolic volume; RVEDV, right ventricular end diastolic volume; RVESV, right

ventricular end systolic volume.
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0.95 [95% CI 0.92-0.971, p < 0.001) and RV (ICC 0.81 [95% CI 0.70-
0.89], p < 0.001). Mean bias, standard deviations, and limits of agree-
ment (+2 SD, according to Bland and Altman) are illustrated in Figure 1.
Two-dimensional TTE displayed a negative mean difference, represent-
ing echocardiographic underestimation of invasive volumes, while 3D-
TEE displayed positive mean differences, representing overestimation.

The highest level of agreement, smallest percentage error, and
smallest limits of agreements were achieved with LV 3D-TEE, which
provided superior image quality and accurate endocardial border tracing.
LV 2D-TTE also showed good correlations with invasive measurements.
RV 3D-TEE exhibited the lowest level of agreement due to its inherent
anatomical (nonspherical) properties, far field, and poorer image quality.

Importantly, we demonstrate strong correlations between invasive
and noninvasive volumes but not the equivalence of these measurements.
It is plausible that differences between modalities are largely caused by
the intrinsic limitations of invasive measurements, due to the presence of
significant tricuspid or mitral regurgitation. As such, overestimation by
3D-TEE may in fact reflect an underestimated invasive volume. In TAVR,
no significant atrioventricular regurgitation is present, which possibly
makes invasive measurements more reliable than in TEER. The under-
estimation by 2D-TTE in TAVR may be a known limitation of 2D-TTE.
Cardiac magnetic resonance imaging would be the best gold standard
for validation of echocardiography derived ventricular volume, but this
was not feasible in our study due to cost and logistics.

PV reconstructions by invasive and noninvasive volume calibration
were retrospectively compared and exhibited similar cardiomechanics,
including quantifications of PV area and stroke work (pressure volume
area 17,831 mmHg/mL (by invasive volume calibration) vs 17,281
mmHg/mL (noninvasive calibration); p = 0.32, and stroke work 11,129
mmHg/mL (invasive) vs 11,520 mmHg/mL (noninvasive); p = 0.20 for
the total group).

This pilot study shows that, by using selected software for echocar-
diographic volume quantification, echocardiography can be used as an
alternative to invasive hypertonic saline and thermodilution for volume
calibration in invasive PV studies. There are various ways to incorporate
this into the clinical workflow. Echocardiography images can be trans-
ferred to another system for image segmentation and immediate volume
calibration in the catheterization laboratory. Alternatively, volume cali-
bration can be performed afterward during PV reconstruction analysis.
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